CORONA-Net: Diagnosing COVID-19 from X-ray Images Using Re-Initialization and Classification Networks

Author:

Elbishlawi Sherif,Abdelpakey Mohamed H.,Shehata Mohamed S.ORCID,Mohamed Mostafa M.ORCID

Abstract

The COVID-19 pandemic has been deemed a global health pandemic. The early detection of COVID-19 is key to combating its outbreak and could help bring this pandemic to an end. One of the biggest challenges in combating COVID-19 is accurate testing for the disease. Utilizing the power of Convolutional Neural Networks (CNNs) to detect COVID-19 from chest X-ray images can help radiologists compare and validate their results with an automated system. In this paper, we propose a carefully designed network, dubbed CORONA-Net, that can accurately detect COVID-19 from chest X-ray images. CORONA-Net is divided into two phases: (1) The reinitialization phase and (2) the classification phase. In the reinitialization phase, the network consists of encoder and decoder networks. The objective of this phase is to train and initialize the encoder and decoder networks by a distribution that comes out of medical images. In the classification phase, the decoder network is removed from CORONA-Net, and the encoder network acts as a backbone network to fine-tune the classification phase based on the learned weights from the reinitialization phase. Extensive experiments were performed on a publicly available dataset, COVIDx, and the results show that CORONA-Net significantly outperforms the current state-of-the-art networks with an overall accuracy of 95.84%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference39 articles.

1. Deep learning

2. Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis;Gozes;arXiv,2020

3. Deep learning system to screen coronavirus disease 2019 pneumonia;Butt;Appl. Intell.,2020

4. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy

5. Large-scale screening of covid-19 from community acquired pneumonia using infection size-aware classification;Shi;arXiv,2020

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3