Abstract
Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher. We present a correction method for metal artifact reduction in SCT that is based on spectral deep learning. The correction efficiently reduces streaking artifacts in all the energy channels measured. We show that the additional information in the energy domain provides relevance for restoring the quality of low-energy reconstruction affected by metal artifacts. The correction method is parameter free and only takes around 15 ms per energy channel, satisfying near-real time requirement of industrial scanners.
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献