Efficient Dehazing with Recursive Gated Convolution in U-Net: A Novel Approach for Image Dehazing

Author:

Wang Zhibo12,Jia Jia1,Lyu Peng1,Min Jeongik1ORCID

Affiliation:

1. Graduate School of Artificial Intelligence, Jeonju University, Jeonju-si 55069, Republic of Korea

2. Artificial Intelligence Research Center, Jeonju University, Jeonju-si 55069, Republic of Korea

Abstract

Image dehazing, a fundamental problem in computer vision, involves the recovery of clear visual cues from images marred by haze. Over recent years, deploying deep learning paradigms has spurred significant strides in image dehazing tasks. However, many dehazing networks aim to enhance performance by adopting intricate network architectures, complicating training, inference, and deployment procedures. This study proposes an end-to-end U-Net dehazing network model with recursive gated convolution and attention mechanisms to improve performance while maintaining a lean network structure. In our approach, we leverage an improved recursive gated convolution mechanism to substitute the original U-Net’s convolution blocks with residual blocks and apply the SK fusion module to revamp the skip connection method. We designate this novel U-Net variant as the Dehaze Recursive Gated U-Net (DRGNet). Comprehensive testing across public datasets demonstrates the DRGNet’s superior performance in dehazing quality, detail retrieval, and objective evaluation metrics. Ablation studies further confirm the effectiveness of the key design elements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3