Improved Coefficient Recovery and Its Application for Rewritable Data Embedding

Author:

Sii Alan,Ong SimyingORCID,Wong KokSheikORCID

Abstract

JPEG is the most commonly utilized image coding standard for storage and transmission purposes. It achieves a good rate–distortion trade-off, and it has been adopted by many, if not all, handheld devices. However, often information loss occurs due to transmission error or damage to the storage device. To address this problem, various coefficient recovery methods have been proposed in the past, including a divide-and-conquer approach to speed up the recovery process. However, the segmentation technique considered in the existing method operates with the assumption of a bi-modal distribution for the pixel values, but most images do not satisfy this condition. Therefore, in this work, an adaptive method was employed to perform more accurate segmentation, so that the real potential of the previous coefficient recovery methods can be unleashed. In addition, an improved rewritable adaptive data embedding method is also proposed that exploits the recoverability of coefficients. Discrete cosine transformation (DCT) patches and blocks for data hiding are judiciously selected based on the predetermined precision to control the embedding capacity and image distortion. Our results suggest that the adaptive coefficient recovery method is able to improve on the conventional method up to 27% in terms of CPU time, and it also achieved better image quality with most considered images. Furthermore, the proposed rewritable data embedding method is able to embed 20,146 bits into an image of dimensions 512×512.

Funder

Fundamental Research Grant Scheme, Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3