Automated Harmonic Signal Removal Technique Using Stochastic Subspace-Based Image Feature Extraction

Author:

Abu Hasan Muhammad Danial BinORCID,Ahmad Zair Asrar Bin,Leong Mohd Salman,Hee Lim Meng

Abstract

This paper presents automated harmonic removal as a desirable solution to effectively identify and discard the harmonic influence over the output signal by neglecting any user-defined parameter at start-up and automatically reconstruct back to become a useful output signal prior to system identification. Stochastic subspace-based algorithms (SSI) methods are the most practical tool due to the consistency in modal parameters estimation. However, it will be problematic when applied to structures with rotating machines and the presence of harmonic excitations. Difficulties arise when automating this procedure without any human interaction and the problem is still unresolved because stochastic subspace-based algorithms (SSI) methods still require parameters (the maximum within-cluster distance) that are compulsory to be defined at start-up for each analysis of the dataset. Thus, the use of image-based feature extraction for clustering and classification of harmonic components and structural poles directly from a stabilization diagram and for modal system identification is the focus of the present paper. As a fundamental necessary condition, the algorithm has been assessed first from computed numerical responses and then applied to the experimental dataset with the presence of harmonic excitation. Results of the proposed approach for estimating modal parameters demonstrated very high accuracy and exhibited consistent results before and after removing harmonic components from the response signal.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3