Content-Based Image Retrieval for Traditional Indonesian Woven Fabric Images Using a Modified Convolutional Neural Network Method

Author:

Tena Silvester12ORCID,Hartanto Rudy1,Ardiyanto Igi1

Affiliation:

1. Department of Electrical Engineering and Information Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

2. Department of Electrical Engineering, University of Nusa Cendana, Kupang 85001, Indonesia

Abstract

A content-based image retrieval system, as an Indonesian traditional woven fabric knowledge base, can be useful for artisans and trade promotions. However, creating an effective and efficient retrieval system is difficult due to the lack of an Indonesian traditional woven fabric dataset, and unique characteristics are not considered simultaneously. One type of traditional Indonesian fabric is ikat woven fabric. Thus, this study collected images of this traditional Indonesian woven fabric to create the TenunIkatNet dataset. The dataset consists of 120 classes and 4800 images. The images were captured perpendicularly, and the ikat woven fabrics were placed on different backgrounds, hung, and worn on the body, according to the utilization patterns. The feature extraction method using a modified convolutional neural network (MCNN) learns the unique features of Indonesian traditional woven fabrics. The experimental results show that the modified CNN model outperforms other pretrained CNN models (i.e., ResNet101, VGG16, DenseNet201, InceptionV3, MobileNetV2, Xception, and InceptionResNetV2) in top-5, top-10, top-20, and top-50 accuracies with scores of 99.96%, 99.88%, 99.50%, and 97.60%, respectively.

Funder

Final Project Recognition Grant Universitas Gadjah Mada

Lembaga Pengelola Dana Pendidikan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference47 articles.

1. Diversifikasi desain produk tenun ikat nusa tenggara timur dengan paduan teknik tenun dan teknik batik;Salma;Din. Kerajinan dan Batik Maj. Ilm.,2018

2. A decade survey of content based image retrieval using deep learning;Dubey;IEEE Trans. Circuits Syst. Video Technol.,2021

3. Content-based image retrieval for fabric images: A survey;Tena;Indones. J. Electr. Eng. Comput. Sci.,2021

4. Content-based image retrieval and feature extraction: A comprehensive review;Latif;Math. Probl. Eng.,2019

5. Content-based image retrieval: A review of recent trends;Hameed;Cogent Eng.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3