Compact Hybrid Multi-Color Space Descriptor Using Clustering-Based Feature Selection for Texture Classification

Author:

Alimoussa MohamedORCID,Porebski AliceORCID,Vandenbroucke NicolasORCID,El Fkihi SanaaORCID,Oulad Haj Thami RachidORCID

Abstract

Color texture classification aims to recognize patterns by the analysis of their colors and their textures. This process requires using descriptors to represent and discriminate the different texture classes. In most traditional approaches, these descriptors are used with a predefined setting of their parameters and computed from images coded in a chosen color space. The prior choice of a color space, a descriptor and its setting suited to a given application is a crucial but difficult problem that strongly impacts the classification results. To overcome this problem, this paper proposes a color texture representation that simultaneously takes into account the properties of several settings from different descriptors computed from images coded in multiple color spaces. Since the number of color texture features generated from this representation is high, a dimensionality reduction scheme by clustering-based sequential feature selection is applied to provide a compact hybrid multi-color space (CHMCS) descriptor. The experimental results carried out on five benchmark color texture databases with five color spaces and manifold settings of two texture descriptors show that combining different configurations always improves the accuracy compared to a predetermined configuration. On average, the CHMCS representation achieves 94.16% accuracy and outperforms deep learning networks and handcrafted color texture descriptors by over 5%, especially when the dataset is small.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3