Use of Very High Spatial Resolution Commercial Satellite Imagery and Deep Learning to Automatically Map Ice-Wedge Polygons across Tundra Vegetation Types

Author:

Bhuiyan Md Abul EhsanORCID,Witharana Chandi,Liljedahl Anna K.ORCID

Abstract

We developed a high-throughput mapping workflow, which centers on deep learning (DL) convolutional neural network (CNN) algorithms on high-performance distributed computing resources, to automatically characterize ice-wedge polygons (IWPs) from sub-meter resolution commercial satellite imagery. We applied a region-based CNN object instance segmentation algorithm, namely the Mask R-CNN, to automatically detect and classify IWPs in North Slope of Alaska. The central goal of our study was to systematically expound the DLCNN model interoperability across varying tundra types (sedge, tussock sedge, and non-tussock sedge) and image scene complexities to refine the understanding of opportunities and challenges for regional-scale mapping applications. We corroborated quantitative error statistics along with detailed visual inspections to gauge the IWP detection accuracies. We found promising model performances (detection accuracies: 89% to 96% and classification accuracies: 94% to 97%) for all candidate image scenes with varying tundra types. The mapping workflow discerned the IWPs by exhibiting low absolute mean relative error (AMRE) values (0.17–0.23). Results further suggest the importance of increasing the variability of training samples when practicing transfer-learning strategy to map IWPs across heterogeneous tundra cover types. Overall, our findings demonstrate the robust performances of IWPs mapping workflow in multiple tundra landscapes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3