Formation of Fused Images of the Land Surface from Radar and Optical Images in Spatially Distributed On-Board Operational Monitoring Systems

Author:

Nenashev Vadim A.ORCID,Khanykov Igor G.ORCID

Abstract

This paper considers the issues of image fusion in a spatially distributed small-size on-board location system for operational monitoring. The purpose of this research is to develop a new method for the formation of fused images of the land surface based on data obtained from optical and radar devices operated from two-position spatially distributed systems of small aircraft, including unmanned aerial vehicles. The advantages of the method for integrating information from radar and optical information-measuring systems are justified. The combined approach allows removing the limitations of each separate system. The practicality of choosing the integration of information from several widely used variants of heterogeneous sources is shown. An iterative approach is used in the method for combining multi-angle location images. This approach improves the quality of synthesis and increases the accuracy of integration, as well as improves the information content and reliability of the final fused image by using the pixel clustering algorithm, which produces many partitions into clusters. The search for reference points on isolated contours is carried out on a pair of left and right images of the docked image from the selected partition. For these reference points, a functional transformation is determined. Having applied it to the original multi-angle heterogeneous images, the degree of correlation of the fused image is assessed. Both the position of the reference points of the contour and the desired functional transformation itself are refined until the quality assessment of the fusion becomes acceptable. The type of functional transformation is selected based on clustered images and then applied to the original multi-angle heterogeneous images. This process is repeated for clustered images with greater granularity in case if quality assessment of the fusion is considered to be poor. At each iteration, there is a search for pairs of points of the contour of the isolated areas. Areas are isolated with the use of two image segmentation methods. Experiments on the formation of fused images are presented. The result of the research is the proposed method for integrating information obtained from a two-position airborne small-sized radar system and an optical location system. The implemented method can improve the information content, quality, and reliability of the finally established fused image of the land surface.

Funder

Russian Science Support Foundation

Russian State Budget

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial-Dynamic Characteristics Research of a Laser Beam at Interacting with Thermal Convection Flow;2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF);2024-06-03

2. Methodology for Classifying Types of Underlying Surfaces Using Radar Frames in a Spatially Distributed System of Small-Sized Radar Stations;2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF);2024-06-03

3. Features of the Implementation of a Streaming Data Exchange System in a Spatially Distributed System of Small-Sized Radar Stations;2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF);2024-06-03

4. Study of the Operating Modes of a Single-Frequency Ring Fiber Laser with Modified Scheme Parameters;2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF);2024-06-03

5. Modified Nested Barker Codes for Ultra-Wideband Signal–Code Constructions;Sensors;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3