Abstract
Accurate morphological information on aortic valve cusps is critical in treatment planning. Image segmentation is necessary to acquire this information, but manual segmentation is tedious and time consuming. In this paper, we propose a fully automatic aortic valve cusps segmentation method from CT images by combining two deep neural networks, spatial configuration-Net for detecting anatomical landmarks and U-Net for segmentation of aortic valve components. A total of 258 CT volumes of end systolic and end diastolic phases, which include cases with and without severe calcifications, were collected and manually annotated for each aortic valve component. The collected CT volumes were split 6:2:2 for the training, validation and test steps, and our method was evaluated by five-fold cross validation. The segmentation was successful for all CT volumes with 69.26 s as mean processing time. For the segmentation results of the aortic root, the right-coronary cusp, the left-coronary cusp and the non-coronary cusp, mean Dice Coefficient were 0.95, 0.70, 0.69, and 0.67, respectively. There were strong correlations between measurement values automatically calculated based on the annotations and those based on the segmentation results. The results suggest that our method can be used to automatically obtain measurement values for aortic valve morphology.
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging
Reference31 articles.
1. Burden of valvular heart diseases: a population-based study
2. Bioprosthetic heart valves: modes of failure
3. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS);Vahanian;Eur. Heart J.,2021
4. Superpixel-Based Segmentation for 3D Prostate MR Images
5. Superpixel and multi-atlas based fusion entropic model for the segmentation of X-ray images
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献