Towards Generating and Evaluating Iconographic Image Captions of Artworks

Author:

Cetinic EvaORCID

Abstract

To automatically generate accurate and meaningful textual descriptions of images is an ongoing research challenge. Recently, a lot of progress has been made by adopting multimodal deep learning approaches for integrating vision and language. However, the task of developing image captioning models is most commonly addressed using datasets of natural images, while not many contributions have been made in the domain of artwork images. One of the main reasons for that is the lack of large-scale art datasets of adequate image-text pairs. Another reason is the fact that generating accurate descriptions of artwork images is particularly challenging because descriptions of artworks are more complex and can include multiple levels of interpretation. It is therefore also especially difficult to effectively evaluate generated captions of artwork images. The aim of this work is to address some of those challenges by utilizing a large-scale dataset of artwork images annotated with concepts from the Iconclass classification system. Using this dataset, a captioning model is developed by fine-tuning a transformer-based vision-language pretrained model. Due to the complex relations between image and text pairs in the domain of artwork images, the generated captions are evaluated using several quantitative and qualitative approaches. The performance is assessed using standard image captioning metrics and a recently introduced reference-free metric. The quality of the generated captions and the model’s capacity to generalize to new data is explored by employing the model to another art dataset to compare the relation between commonly generated captions and the genre of artworks. The overall results suggest that the model can generate meaningful captions that indicate a stronger relevance to the art historical context, particularly in comparison to captions obtained from models trained only on natural image datasets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging

Reference51 articles.

1. Microsoft coco: Common objects in context;Lin,2014

2. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions

3. Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations

4. Studies in Iconology. Humanistic Themes in the Art of the Renaissance, New York;Panofsky,1972

5. Brill Iconclass AI Test Sethttps://labs.brill.com/ictestset/

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3