Autokeras Approach: A Robust Automated Deep Learning Network for Diagnosis Disease Cases in Medical Images

Author:

Alaiad Ahmad1,Migdady Aya1,Al-Khatib Ra’ed M.2ORCID,Alzoubi Omar3,Zitar Raed Abu4ORCID,Abualigah Laith5678910ORCID

Affiliation:

1. Department of Computer Information Systems, Jordan University of Science and Technology, Irbid 22110, Jordan

2. Department of Computer Sciences, Yarmouk University, Irbid 21163, Jordan

3. Department of Computer Science, Jordan University of Science and Technology, Irbid 22110, Jordan

4. Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, Abu Dhabi P.O. Box 32092, United Arab Emirates

5. Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al al-Bayt University, Mafraq 25113, Jordan

6. College of Engineering, Yuan Ze University, Taoyuan 320315, Taiwan

7. Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan

8. Faculty of Information Technology, Middle East University, Amman 11831, Jordan

9. Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan

10. School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia

Abstract

Automated deep learning is promising in artificial intelligence (AI). However, a few applications of automated deep learning networks have been made in the clinical medical fields. Therefore, we studied the application of an open-source automated deep learning framework, Autokeras, for detecting smear blood images infected with malaria parasites. Autokeras is able to identify the optimal neural network to perform the classification task. Hence, the robustness of the adopted model is due to it not needing any prior knowledge from deep learning. In contrast, the traditional deep neural network methods still require more construction to identify the best convolutional neural network (CNN). The dataset used in this study consisted of 27,558 blood smear images. A comparative process proved the superiority of our proposed approach over other traditional neural networks. The evaluation results of our proposed model achieved high efficiency with impressive accuracy, reaching 95.6% when compared with previous competitive models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference32 articles.

1. WHO (2019). Global Perspectives on Assistive Technology: Proceedings of the GReAT Consultation 2019.

2. Rahman, A., Zunair, H., Rahman, M.S., Yuki, J.Q., Biswas, S., Alam, M.A., Alam, N.B., and Mahdy, M. (2019). Improving malaria parasite detection from red blood cell using deep convolutional neural networks. arXiv.

3. WHO (2019). World Malaria Report 2019.

4. Online learning in the time of COVID-19;Chiodini;Travel Med. Infect. Dis.,2020

5. Osei-Yeboah, J., Kwame Norgbe, G., Yao Lokpo, S., Khadijah Kinansua, M., Nettey, L., and Allotey, E.A. (2016). Comparative performance evaluation of routine malaria diagnosis at Ho Municipal Hospital. J. Parasitol. Res., 2016.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3