Deep Learning for Pneumonia Detection in Chest X-ray Images: A Comprehensive Survey

Author:

Siddiqi Raheel1ORCID,Javaid Sameena1ORCID

Affiliation:

1. Computer Science Department, Karachi Campus, Bahria University, Karachi 73500, Pakistan

Abstract

This paper addresses the significant problem of identifying the relevant background and contextual literature related to deep learning (DL) as an evolving technology in order to provide a comprehensive analysis of the application of DL to the specific problem of pneumonia detection via chest X-ray (CXR) imaging, which is the most common and cost-effective imaging technique available worldwide for pneumonia diagnosis. This paper in particular addresses the key period associated with COVID-19, 2020–2023, to explain, analyze, and systematically evaluate the limitations of approaches and determine their relative levels of effectiveness. The context in which DL is applied as both an aid to and an automated substitute for existing expert radiography professionals, who often have limited availability, is elaborated in detail. The rationale for the undertaken research is provided, along with a justification of the resources adopted and their relevance. This explanatory text and the subsequent analyses are intended to provide sufficient detail of the problem being addressed, existing solutions, and the limitations of these, ranging in detail from the specific to the more general. Indeed, our analysis and evaluation agree with the generally held view that the use of transformers, specifically, vision transformers (ViTs), is the most promising technique for obtaining further effective results in the area of pneumonia detection using CXR images. However, ViTs require extensive further research to address several limitations, specifically the following: biased CXR datasets, data and code availability, the ease with which a model can be explained, systematic methods of accurate model comparison, the notion of class imbalance in CXR datasets, and the possibility of adversarial attacks, the latter of which remains an area of fundamental research.

Publisher

MDPI AG

Reference234 articles.

1. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning;Kermany;Cell,2018

2. Pneumonia Classification Using Deep Learning from Chest X-ray Images During COVID-19;Ibrahim;Cogn. Comput.,2024

3. (2022, September 14). Pneumonia|CDC, Available online: https://www.cdc.gov/pneumonia/index.html.

4. Viral pneumonia;Ruuskanen;Lancet,2011

5. (2022, September 14). World Health Organization (WHO). Available online: https://www.who.int/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3