Abstract
The detection of manipulated videos represents a highly relevant problem in multimedia forensics, which has been widely investigated in the last years. However, a common trait of published studies is the fact that the forensic analysis is typically applied on data prior to their potential dissemination over the web. This work addresses the challenging scenario where manipulated videos are first shared through social media platforms and then are subject to the forensic analysis. In this context, a large scale performance evaluation has been carried out involving general purpose deep networks and state-of-the-art manipulated data, and studying different effects. Results confirm that a performance drop is observed in every case when unseen shared data are tested by networks trained on non-shared data; however, fine-tuning operations can mitigate this problem. Also, we show that the output of differently trained networks can carry useful forensic information for the identification of the specific technique used for visual manipulation, both for shared and non-shared data.
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献