Automated Coronary Artery Tracking with a Voronoi-Based 3D Centerline Extraction Algorithm

Author:

Dalvit Carvalho da Silva Rodrigo12,Soltanzadeh Ramin123ORCID,Figley Chase R.123ORCID

Affiliation:

1. Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

2. Division of Diagnostic Imaging, Health Sciences Centre, Shared Health Manitoba, Winnipeg, MB R3T 2N2, Canada

3. Biomedical Engineering Program, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada

Abstract

Coronary artery disease is one of the leading causes of death worldwide, and medical imaging methods such as coronary artery computed tomography are vitally important in its detection. More recently, various computational approaches have been proposed to automatically extract important artery coronary features (e.g., vessel centerlines, cross-sectional areas along vessel branches, etc.) that may ultimately be able to assist with more accurate and timely diagnoses. The current study therefore validated and benchmarked a recently developed automated 3D centerline extraction method for coronary artery centerline tracking using synthetically segmented coronary artery models based on the widely used Rotterdam Coronary Artery Algorithm Evaluation Framework (RCAAEF) training dataset. Based on standard accuracy metrics and the ground truth centerlines of all 32 coronary vessel branches in the RCAAEF training dataset, this 3D divide and conquer Voronoi diagram method performed exceptionally well, achieving an average overlap accuracy (OV) of 99.97%, overlap until first error (OF) of 100%, overlap of the clinically relevant portion of the vessel (OT) of 99.98%, and an average error distance inside the vessels (AI) of only 0.13 mm. Accuracy was also found to be exceptionally for all four coronary artery sub-types, with average OV values of 99.99% for right coronary arteries, 100% for left anterior descending arteries, 99.96% for left circumflex arteries, and 100% for large side-branch vessels. These results validate that the proposed method can be employed to quickly, accurately, and automatically extract 3D centerlines from segmented coronary arteries, and indicate that it is likely worthy of further exploration given the importance of this topic.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant

Research Manitoba Innovation Grant

Mathematics of Information Technology and Complex Systems (MITACS) Accelerate Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3