Iterative-Trained Semi-Blind Deconvolution Algorithm to Compensate Straylight in Retinal Images

Author:

Ávila Francisco J.ORCID,Ares JorgeORCID,Marcellán María C.,Collados María V.,Remón Laura

Abstract

The optical quality of an image depends on both the optical properties of the imaging system and the physical properties of the medium in which the light travels from the object to the final imaging sensor. The analysis of the point spread function of the optical system is an objective way to quantify the image degradation. In retinal imaging, the presence of corneal or cristalline lens opacifications spread the light at wide angular distributions. If the mathematical operator that degrades the image is known, the image can be restored through deconvolution methods. In the particular case of retinal imaging, this operator may be unknown (or partially) due to the presence of cataracts, corneal edema, or vitreous opacification. In those cases, blind deconvolution theory provides useful results to restore important spatial information of the image. In this work, a new semi-blind deconvolution method has been developed by training an iterative process with the Glare Spread Function kernel based on the Richardson-Lucy deconvolution algorithm to compensate a veiling glare effect in retinal images due to intraocular straylight. The method was first tested with simulated retinal images generated from a straylight eye model and applied to a real retinal image dataset composed of healthy subjects and patients with glaucoma and diabetic retinopathy. Results showed the capacity of the algorithm to detect and compensate the veiling glare degradation and improving the image sharpness up to 1000% in the case of healthy subjects and up to 700% in the pathological retinal images. This image quality improvement allows performing image segmentation processing with restored hidden spatial information after deconvolution.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational single fundus image restoration techniques: a review;Frontiers in Ophthalmology;2024-06-12

2. Subjective Straylight Index: A Visual Test for Retinal Contrast Assessment as a Function of Veiling Glare;Journal of Imaging;2024-04-10

3. Blind Image De-Blurring with PNN and Random Forest Regression Model;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

4. Lens Flare Attenuation Accelerator Design with Deep Learning and High-Level Synthesis;2023 IEEE Nordic Circuits and Systems Conference (NorCAS);2023-10-31

5. Luminosity rectified blind Richardson-Lucy deconvolution for single retinal image restoration;Computer Methods and Programs in Biomedicine;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3