Fast Blob and Air Line Defects Detection for High Speed Glass Tube Production Lines

Author:

De Vitis Gabriele Antonio,Di Tecco Antonio,Foglia Pierfrancesco,Prete Cosimo Antonio

Abstract

During the production of pharmaceutical glass tubes, a machine-vision based inspection system can be utilized to perform the high-quality check required by the process. The necessity to improve detection accuracy, and increase production speed determines the need for fast solutions for defects detection. Solutions proposed in literature cannot be efficiently exploited due to specific factors that characterize the production process. In this work, we have derived an algorithm that does not change the detection quality compared to state-of-the-art proposals, but does determine a drastic reduction in the processing time. The algorithm utilizes an adaptive threshold based on the Sigma Rule to detect blobs, and applies a threshold to the variation of luminous intensity along a row to detect air lines. These solutions limit the detection effects due to the tube’s curvature, and rotation and vibration of the tube, which characterize glass tube production. The algorithm has been compared with state-of-the-art solutions. The results demonstrate that, with the algorithm proposed, the processing time of the detection phase is reduced by 86%, with an increase in throughput of 268%, achieving greater accuracy in detection. Performance is further improved by adopting Region of Interest reduction techniques. Moreover, we have developed a tuning procedure to determine the algorithm’s parameters in the production batch change. We assessed the performance of the algorithm in a real environment using the “certification” functionality of the machine. Furthermore, we observed that out of 1000 discarded tubes, nine should not have been discarded and a further seven should have been discarded.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3