Cardiac Disease Classification Using Two-Dimensional Thickness and Few-Shot Learning Based on Magnetic Resonance Imaging Image Segmentation

Author:

Wibowo AdiORCID,Triadyaksa PandjiORCID,Sugiharto Aris,Sarwoko Eko Adi,Nugroho Fajar Agung,Arai HideoORCID,Kawakubo MasateruORCID

Abstract

Cardiac cine magnetic resonance imaging (MRI) is a widely used technique for the noninvasive assessment of cardiac functions. Deep neural networks have achieved considerable progress in overcoming various challenges in cine MRI analysis. However, deep learning models cannot be used for classification because limited cine MRI data are available. To overcome this problem, features from cine image settings are derived by handcrafting and addition of other clinical features to the classical machine learning approach for ensuring the model fits the MRI device settings and image parameters required in the analysis. In this study, a novel method was proposed for classifying heart disease (cardiomyopathy patient groups) using only segmented output maps. In the encoder–decoder network, the fully convolutional EfficientNetB5-UNet was modified to perform the semantic segmentation of the MRI image slice. A two-dimensional thickness algorithm was used to combine the segmentation outputs for the 2D representation of images of the end-diastole (ED) and end-systole (ES) cardiac volumes. The thickness images were subsequently used for classification by using a few-shot model with an adaptive subspace classifier. Model performance was verified by applying the model to the 2017 MICCAI Medical Image Computing and Computer-Assisted Intervention dataset. High segmentation performance was achieved as follows: the average Dice coefficients of segmentation were 96.24% (ED) and 89.92% (ES) for the left ventricle (LV); the values for the right ventricle (RV) were 92.90% (ED) and 86.92% (ES). The values for myocardium were 88.90% (ED) and 90.48% (ES). An accuracy score of 92% was achieved in the classification of various cardiomyopathy groups without clinical features. A novel rapid analysis approach was proposed for heart disease diagnosis, especially for cardiomyopathy conditions using cine MRI based on segmented output maps.

Funder

Diponegoro University

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meta-learning in Healthcare: A Survey;SN Computer Science;2024-08-12

2. Breaking the data barrier: a review of deep learning techniques for democratizing AI with small datasets;Artificial Intelligence Review;2024-08-02

3. A Deep Learning Ensemble-Based Approach for Cine MRI Segmentation and Classification Pipeline;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03

4. Consistent penalizing field loss for zero-shot image retrieval;Expert Systems with Applications;2024-02

5. Deep neural network architectures for cardiac image segmentation;Artificial Intelligence in the Life Sciences;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3