Multi-View Learning for Material Classification

Author:

Sumon Borhan Uddin,Muselet Damien,Xu Sixiang,Trémeau AlainORCID

Abstract

Material classification is similar to texture classification and consists in predicting the material class of a surface in a color image, such as wood, metal, water, wool, or ceramic. It is very challenging because of the intra-class variability. Indeed, the visual appearance of a material is very sensitive to the acquisition conditions such as viewpoint or lighting conditions. Recent studies show that deep convolutional neural networks (CNNs) clearly outperform hand-crafted features in this context but suffer from a lack of data for training the models. In this paper, we propose two contributions to cope with this problem. First, we provide a new material dataset with a large range of acquisition conditions so that CNNs trained on these data can provide features that can adapt to the diverse appearances of the material samples encountered in real-world. Second, we leverage recent advances in multi-view learning methods to propose an original architecture designed to extract and combine features from several views of a single sample. We show that such multi-view CNNs significantly improve the performance of the classical alternatives for material classification.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference54 articles.

1. Transfer Learning for Material Classification Based on Material Appearance Correspondances;Xu;Ph.D. Thesis,2021

2. Property-Aware Robot Object Manipulation: A Generative Approach;Garello;Proceedings of the 2021 IEEE International Conference on Development and Learning (ICDL),2021

3. Computer vision for solid waste sorting: A critical review of academic research

4. Beyond White: Ground Truth Colors for Color Constancy Correction;Cheng;Proceedings of the IEEE International Conference on Computer Vision (ICCV),2015

5. The Lottery Ticket Hypothesis for Object Recognition;Girish;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3