Spectral Reflectance Estimation from Camera Response Using Local Optimal Dataset and Neural Networks

Author:

Tominaga Shoji12,Sakai Hideaki3

Affiliation:

1. Department of Computer Science, Norwegian University of Science and Technology, 2815 Gjøvik, Norway

2. Department of Business and Informatics, Nagano University, Ueda 386-1298, Japan

3. Professor Emeritus, Kyoto University, Kyoto 606-8501, Japan

Abstract

In this study, a novel method is proposed to estimate surface-spectral reflectance from camera responses that combine model-based and training-based approaches. An imaging system is modeled using the spectral sensitivity functions of an RGB camera, spectral power distributions of multiple light sources, unknown surface-spectral reflectance, additive noise, and a gain parameter. The estimation procedure comprises two main stages: (1) selecting the local optimal reflectance dataset from a reflectance database and (2) determining the best estimate by applying a neural network to the local optimal dataset only. In stage (1), the camera responses are predicted for the respective reflectances in the database, and the optimal candidates are selected in the order of lowest prediction error. In stage (2), most reflectance training data are obtained by a convex linear combination of local optimal data using weighting coefficients based on random numbers. A feed-forward neural network with one hidden layer is used to map the observation space onto the spectral reflectance space. In addition, the reflectance estimation is repeated by generating multiple sets of random numbers, and the median of a set of estimated reflectances is determined as the final estimate of the reflectance. Experimental results show that the estimation accuracies exceed those of other methods.

Funder

Grant-in-Aid for Scientific Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3