Gadolinium and Bio-Metal Association: A Concentration Dependency Tested in a Renal Allograft and Investigated by Micro-Synchrotron XRF

Author:

Osterode Wolf,Falkenberg GeraldORCID,Regele Heinz

Abstract

Aims: This study aimed to investigate gadolinium (Gd) and bio-metals in a renal allograft of a patient who was shortly after transplantation repeatedly exposed to a Gd-based contrast agent (GBCA), with the purpose of determining whether Gd can be proven and spatially and quantitatively imaged. Further elemental associations between Gd and bio-metals were also investigated. Materials and Methods: Archival paraffin-embedded kidney tissue (eight weeks after transplantation) was investigated by microscopic synchrotron X-ray fluorescence (µSRXRF) at the DORIS III storage ring, beamline L, at HASYLAB/DESY (Hamburg, Germany). For the quantification of elements, X-ray spectra were peak-fitted, and the net peak intensities were normalized to the intensity of the incoming monochromatic beam intensity. Concentrations were calculated by fundamental parameter-based program quant and external standardization. Results: Analysis of about 15,000 µSRXRF spectra (comprising allograft tissue of four cm2) Gd distribution could be quantitatively demonstrated in a near histological resolution. Mean Gd resulted in 24 ± 55 ppm with a maximum of 2363 ppm. The standard deviation of ±55 ppm characterized the huge differences in Gd and not in detection accuracy. Gd was heterogeneously but not randomly distributed and was mostly found in areas with interstitial fibrosis and tubular atrophy. Concentrations of all other investigated elements in the allograft resembled those found in normal kidney tissue. No correlations between Gd and bio-metals such as calcium, strontium or zinc below ~40 ppm Gd existed. In areas with extremely high Gd, Gd was associated with iron and zinc. Conclusions: We could show that no dose-dependent association between Gd and bio-metals exists—least in renal tissue—at Gd concentrations below ~40 ppm Gd. This was proven compared with a GBCA-exposed end-stage renal failure in which the mean Gd was ten-fold higher. Our results could shed additional light on Gd metabolism.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3