Effects of Image Quality on the Accuracy Human Pose Estimation and Detection of Eye Lid Opening/Closing Using Openpose and DLib

Author:

Ye Run ZhouORCID,Subramanian Arun,Diedrich Daniel,Lindroth HeidiORCID,Pickering Brian,Herasevich VitalyORCID

Abstract

Objective: The application of computer models in continuous patient activity monitoring using video cameras is complicated by the capture of images of varying qualities due to poor lighting conditions and lower image resolutions. Insufficient literature has assessed the effects of image resolution, color depth, noise level, and low light on the inference of eye opening and closing and body landmarks from digital images. Method: This study systematically assessed the effects of varying image resolutions (from 100 × 100 pixels to 20 × 20 pixels at an interval of 10 pixels), lighting conditions (from 42 to 2 lux with an interval of 2 lux), color-depths (from 16.7 M colors to 8 M, 1 M, 512 K, 216 K, 64 K, 8 K, 1 K, 729, 512, 343, 216, 125, 64, 27, and 8 colors), and noise levels on the accuracy and model performance in eye dimension estimation and body keypoint localization using the Dlib library and OpenPose with images from the Closed Eyes in the Wild and the COCO datasets, as well as photographs of the face captured at different light intensities. Results: The model accuracy and rate of model failure remained acceptable at an image resolution of 60 × 60 pixels, a color depth of 343 colors, a light intensity of 14 lux, and a Gaussian noise level of 4% (i.e., 4% of pixels replaced by Gaussian noise). Conclusions: The Dlib and OpenPose models failed to detect eye dimensions and body keypoints only at low image resolutions, lighting conditions, and color depths. Clinical Impact: Our established baseline threshold values will be useful for future work in the application of computer vision in continuous patient monitoring.

Funder

Canadian Institute of Health Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3