Automatic Jordanian License Plate Detection and Recognition System Using Deep Learning Techniques

Author:

Aqaileh Tharaa1,Alkhateeb Faisal12ORCID

Affiliation:

1. Department of Computer Science, Yarmouk University, Irbid 21163, Jordan

2. Department of Computer Science, University of Bahrain, Sakheer 32038, Bahrain

Abstract

Recently, the number of vehicles on the road, especially in urban centres, has increased dramatically due to the increasing trend of individuals towards urbanisation. As a result, manual detection and recognition of vehicles (i.e., license plates and vehicle manufacturers) become an arduous task and beyond human capabilities. In this paper, we have developed a system using transfer learning-based deep learning (DL) techniques to identify Jordanian vehicles automatically. The YOLOv3 (You Only Look Once) model was re-trained using transfer learning to accomplish license plate detection, character recognition, and vehicle logo detection. In contrast, the VGG16 (Visual Geometry Group) model was re-trained to accomplish the vehicle logo recognition. To train and test these models, four datasets have been collected. The first dataset consists of 7035 Jordanian vehicle images, the second dataset consists of 7176 Jordanian license plates, and the third dataset consists of 8271 Jordanian vehicle images. These datasets have been used to train and test the YOLOv3 model for Jordanian license plate detection, character recognition, and vehicle logo detection. In comparison, the fourth dataset consists of 158,230 vehicle logo images used to train and test the VGG16 model for vehicle logo recognition. Text measures were used to evaluate the performance of our developed system. Moreover, the mean average precision (mAP) measure was used to assess the YOLOv3 model of the detection tasks (i.e., license plate detection and vehicle logo detection). For license plate detection, the precision, recall, F-measure, and mAP were 99.6%, 100%, 99.8%, and 99.9%, respectively. While for character recognition, the precision, recall, and F-measure were 100%, 99.9%, and 99.95%, respectively. The performance of the license plate recognition stage was evaluated by evaluating these two sub-stages as a sequence, where the precision, recall, and F-measure were 99.8%, 99.8%, and 99.8%, respectively. Furthermore, for vehicle logo detection, the precision, recall, F-measure, and mAP were 99%, 99.6%, 99.3%, and 99.1%, respectively, while for vehicle logo recognition, the precision, recall, and F-measure were 98%, 98%, and 98%, respectively. The performance of the vehicle logo recognition stage was evaluated by evaluating these two sub-stages as a sequence, where the precision, recall, and F-measure were 95.3%, 99.5%, and 97.4%, respectively.

Funder

YU

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3