Direct and Indirect vSLAM Fusion for Augmented Reality

Author:

Outahar MohamedORCID,Moreau GuillaumeORCID,Normand Jean-MarieORCID

Abstract

Augmented reality (AR) is an emerging technology that is applied in many fields. One of the limitations that still prevents AR to be even more widely used relates to the accessibility of devices. Indeed, the devices currently used are usually high end, expensive glasses or mobile devices. vSLAM (visual simultaneous localization and mapping) algorithms circumvent this problem by requiring relatively cheap cameras for AR. vSLAM algorithms can be classified as direct or indirect methods based on the type of data used. Each class of algorithms works optimally on a type of scene (e.g., textured or untextured) but unfortunately with little overlap. In this work, a method is proposed to fuse a direct and an indirect methods in order to have a higher robustness and to offer the possibility for AR to move seamlessly between different types of scenes. Our method is tested on three datasets against state-of-the-art direct (LSD-SLAM), semi-direct (LCSD) and indirect (ORBSLAM2) algorithms in two different scenarios: a trajectory planning and an AR scenario where a virtual object is displayed on top of the video feed; furthermore, a similar method (LCSD SLAM) is also compared to our proposal. Results show that our fusion algorithm is generally as efficient as the best algorithm both in terms of trajectory (mean errors with respect to ground truth trajectory measurements) as well as in terms of quality of the augmentation (robustness and stability). In short, we can propose a fusion algorithm that, in our tests, takes the best of both the direct and indirect methods.

Funder

Institut de Recherche Technologique Jules Verne

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3