Order Space-Based Morphology for Color Image Processing

Author:

Sun Shanqian1,Huang Yunjia1ORCID,Inoue Kohei1ORCID,Hara Kenji1

Affiliation:

1. Department of Media Design, Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540, Japan

Abstract

Mathematical morphology is a fundamental tool based on order statistics for image processing, such as noise reduction, image enhancement and feature extraction, and is well-established for binary and grayscale images, whose pixels can be sorted by their pixel values, i.e., each pixel has a single number. On the other hand, each pixel in a color image has three numbers corresponding to three color channels, e.g., red (R), green (G) and blue (B) channels in an RGB color image. Therefore, it is difficult to sort color pixels uniquely. In this paper, we propose a method for unifying the orders of pixels sorted in each color channel separately, where we consider that a pixel exists in a three-dimensional space called order space, and derive a single order by a monotonically nondecreasing function defined on the order space. We also fuzzify the proposed order space-based morphological operations, and demonstrate the effectiveness of the proposed method by comparing with a state-of-the-art method based on hypergraph theory. The proposed method treats three orders of pixels sorted in respective color channels equally. Therefore, the proposed method is consistent with the conventional morphological operations for binary and grayscale images.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimising forest rehabilitation and restoration through remote sensing and machine learning: Mapping natural forests in the eThekwini Municipality;Remote Sensing Applications: Society and Environment;2024-11

2. Discrete Morphological Neural Networks;SIAM Journal on Imaging Sciences;2024-07-25

3. Redescribing Images: A Novel Approach Using Vision Transformer and Image Enhancement Techniques;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

4. Improved mKLT and low layered HG-CNN based dynamic gesture recognition hardware system;Multimedia Tools and Applications;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3