Investigating Contrastive Pair Learning’s Frontiers in Supervised, Semisupervised, and Self-Supervised Learning

Author:

Sabiri Bihi1ORCID,Khtira Amal2,El Asri Bouchra1,Rhanoui Maryem34ORCID

Affiliation:

1. IMS Team, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University in Rabat, Rabat 10000, Morocco

2. LASTIMI Laboratory, EST Salé, Mohammed V University in Rabat, Salé 11060, Morocco

3. Laboratory Health Systemic Process (P2S), UR4129, University Claude Bernard Lyon 1, University of Lyon, 69100 Lyon, France

4. Meridian Team, LYRICA Laboratory, School of Information Sciences, Rabat 10100, Morocco

Abstract

In recent years, contrastive learning has been a highly favored method for self-supervised representation learning, which significantly improves the unsupervised training of deep image models. Self-supervised learning is a subset of unsupervised learning in which the learning process is supervised by creating pseudolabels from the data themselves. Using supervised final adjustments after unsupervised pretraining is one way to take the most valuable information from a vast collection of unlabeled data and teach from a small number of labeled instances. This study aims firstly to compare contrastive learning with other traditional learning models; secondly to demonstrate by experimental studies the superiority of contrastive learning during classification; thirdly to fine-tune performance using pretrained models and appropriate hyperparameter selection; and finally to address the challenge of using contrastive learning techniques to produce data representations with semantic meaning that are independent of irrelevant factors like position, lighting, and background. Relying on contrastive techniques, the model efficiently captures meaningful representations by discerning similarities and differences between modified copies of the same image. The proposed strategy, involving unsupervised pretraining followed by supervised fine-tuning, improves the robustness, accuracy, and knowledge extraction of deep image models. The results show that even with a modest 5% of data labeled, the semisupervised model achieves an accuracy of 57.72%. However, the use of supervised learning with a contrastive approach and careful hyperparameter tuning increases accuracy to 85.43%. Further adjustment of the hyperparameters resulted in an excellent accuracy of 88.70%.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3