Olympic Games Event Recognition via Transfer Learning with Photobombing Guided Data Augmentation

Author:

Mohamad Yousef I.ORCID,Baraheem Samah S.,Nguyen Tam V.ORCID

Abstract

Automatic event recognition in sports photos is both an interesting and valuable research topic in the field of computer vision and deep learning. With the rapid increase and the explosive spread of data, which is being captured momentarily, the need for fast and precise access to the right information has become a challenging task with considerable importance for multiple practical applications, i.e., sports image and video search, sport data analysis, healthcare monitoring applications, monitoring and surveillance systems for indoor and outdoor activities, and video captioning. In this paper, we evaluate different deep learning models in recognizing and interpreting the sport events in the Olympic Games. To this end, we collect a dataset dubbed Olympic Games Event Image Dataset (OGED) including 10 different sport events scheduled for the Olympic Games Tokyo 2020. Then, the transfer learning is applied on three popular deep convolutional neural network architectures, namely, AlexNet, VGG-16 and ResNet-50 along with various data augmentation methods. Extensive experiments show that ResNet-50 with the proposed photobombing guided data augmentation achieves 90% in terms of accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging

Reference24 articles.

1. A Survey of Content-Aware Video Analysis for Sports

2. Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis

3. Very deep convolutional networks for large-scale image recognition;Simonyan;arXiv,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3