Enhancing Apple Cultivar Classification Using Multiview Images

Author:

Krug Silvia12ORCID,Hutschenreuther Tino2

Affiliation:

1. Department of Computer and Electrical Engineering, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden

2. System Design Department, IMMS Institut für Mikroelektronik- und Mechatronik-Systeme Gemeinnützige GmbH (IMMS GmbH), Ehrenbergstraße 27, 98693 Ilmenau, Germany

Abstract

Apple cultivar classification is challenging due to the inter-class similarity and high intra-class variations. Human experts do not rely on single-view features but rather study each viewpoint of the apple to identify a cultivar, paying close attention to various details. Following our previous work, we try to establish a similar multiview approach for machine-learning (ML)-based apple classification in this paper. In our previous work, we studied apple classification using one single view. While these results were promising, it also became clear that one view alone might not contain enough information in the case of many classes or cultivars. Therefore, exploring multiview classification for this task is the next logical step. Multiview classification is nothing new, and we use state-of-the-art approaches as a base. Our goal is to find the best approach for the specific apple classification task and study what is achievable with the given methods towards our future goal of applying this on a mobile device without the need for internet connectivity. In this study, we compare an ensemble model with two cases where we use single networks: one without view specialization trained on all available images without view assignment and one where we combine the separate views into a single image of one specific instance. The two latter options reflect dataset organization and preprocessing to allow the use of smaller models in terms of stored weights and number of operations than an ensemble model. We compare the different approaches based on our custom apple cultivar dataset. The results show that the state-of-the-art ensemble provides the best result. However, using images with combined views shows a decrease in accuracy by 3% while requiring only 60% of the memory for weights. Thus, simpler approaches with enhanced preprocessing can open a trade-off for classification tasks on mobile devices.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3