Author:
Pelt Daniël,Batenburg Kees,Sethian James
Abstract
In many applications of tomography, the acquired data are limited in one or more ways due to unavoidable experimental constraints. In such cases, popular direct reconstruction algorithms tend to produce inaccurate images, and more accurate iterative algorithms often have prohibitively high computational costs. Using machine learning to improve the image quality of direct algorithms is a recently proposed alternative, for which promising results have been shown. However, previous attempts have focused on using encoder–decoder networks, which have several disadvantages when applied to large tomographic images, preventing wide application in practice. Here, we propose the use of the Mixed-Scale Dense convolutional neural network architecture, which was specifically designed to avoid these disadvantages, to improve tomographic reconstruction from limited data. Results are shown for various types of data limitations and object types, for both simulated data and large-scale real-world experimental data. The results are compared with popular tomographic reconstruction algorithms and machine learning algorithms, showing that Mixed-Scale Dense networks are able to significantly improve reconstruction quality even with severely limited data, and produce more accurate results than existing algorithms.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献