Abstract
Artificial intelligence (AI) is expected to have a major effect on radiology as it demonstrated remarkable progress in many clinical tasks, mostly regarding the detection, segmentation, classification, monitoring, and prediction of diseases. Generative Adversarial Networks have been proposed as one of the most exciting applications of deep learning in radiology. GANs are a new approach to deep learning that leverages adversarial learning to tackle a wide array of computer vision challenges. Brain radiology was one of the first fields where GANs found their application. In neuroradiology, indeed, GANs open unexplored scenarios, allowing new processes such as image-to-image and cross-modality synthesis, image reconstruction, image segmentation, image synthesis, data augmentation, disease progression models, and brain decoding. In this narrative review, we will provide an introduction to GANs in brain imaging, discussing the clinical potential of GANs, future clinical applications, as well as pitfalls that radiologists should be aware of.
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献