Flexible Krylov Methods for Edge Enhancement in Imaging

Author:

Gazzola SilviaORCID,Scott Sebastian JamesORCID,Spence Alastair

Abstract

Many successful variational regularization methods employed to solve linear inverse problems in imaging applications (such as image deblurring, image inpainting, and computed tomography) aim at enhancing edges in the solution, and often involve non-smooth regularization terms (e.g., total variation). Such regularization methods can be treated as iteratively reweighted least squares problems (IRLS), which are usually solved by the repeated application of a Krylov projection method. This approach gives rise to an inner–outer iterative scheme where the outer iterations update the weights and the inner iterations solve a least squares problem with fixed weights. Recently, flexible or generalized Krylov solvers, which avoid inner–outer iterations by incorporating iteration-dependent weights within a single approximation subspace for the solution, have been devised to efficiently handle IRLS problems. Indeed, substantial computational savings are generally possible by avoiding the repeated application of a traditional Krylov solver. This paper aims to extend the available flexible Krylov algorithms in order to handle a variety of edge-enhancing regularization terms, with computationally convenient adaptive regularization parameter choice. In order to tackle both square and rectangular linear systems, flexible Krylov methods based on the so-called flexible Golub–Kahan decomposition are considered. Some theoretical results are presented (including a convergence proof) and numerical comparisons with other edge-enhancing solvers show that the new methods compute solutions of similar or better quality, with increased speedup.

Funder

Engineering and Physical Sciences Research Council

EPSRC Centre for Doctoral Training in Statistical Applied Mathematics at Bath

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology Nuclear Medicine and imaging

Reference44 articles.

1. Discrete Inverse Problems: Insight and Algorithms;Hansen,2010

2. Deblurring Images: Matrices, Spectra, and Filtering;Hansen,2006

3. Handbook of Mathematical Methods in Imaging;Scherzer,2010

4. Iterative image restoration;Berisha,2014

5. On Krylov projection methods and Tikhonov regularization;Gazzola;Electron. Trans. Numer. Anal.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Krylov methods for large-scale CBCT reconstruction;Physics in Medicine & Biology;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3