A Joint De-Rain and De-Mist Network Based on the Atmospheric Scattering Model

Author:

Gu Linyun1,Xu Huahu2,Ma Xiaojin3

Affiliation:

1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

2. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

3. Business School, Henan University of Science and Technology, Luoyang 471003, China

Abstract

Rain can have a detrimental effect on optical components, leading to the appearance of streaks and halos in images captured during rainy conditions. These visual distortions caused by rain and mist contribute significant noise information that can compromise image quality. In this paper, we propose a novel approach for simultaneously removing both streaks and halos from the image to produce clear results. First, based on the principle of atmospheric scattering, a rain and mist model is proposed to initially remove the streaks and halos from the image by reconstructing the image. The Deep Memory Block (DMB) selectively extracts the rain layer transfer spectrum and the mist layer transfer spectrum from the rainy image to separate these layers. Then, the Multi-scale Convolution Block (MCB) receives the reconstructed images and extracts both structural and detailed features to enhance the overall accuracy and robustness of the model. Ultimately, extensive results demonstrate that our proposed model JDDN (Joint De-rain and De-mist Network) outperforms current state-of-the-art deep learning methods on synthetic datasets as well as real-world datasets, with an average improvement of 0.29 dB on the heavy-rainy-image dataset.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3