Deep Learning Applied to Intracranial Hemorrhage Detection

Author:

Cortés-Ferre Luis1ORCID,Gutiérrez-Naranjo Miguel Angel1ORCID,Egea-Guerrero Juan José23ORCID,Pérez-Sánchez Soledad45ORCID,Balcerzyk Marcin67ORCID

Affiliation:

1. Department of Computer Sciences and Artificial Intelligence, University of Seville, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

2. Hospital Universitario Virgen del Rocio, Avda. Manuel Siurot, 41013 Sevilla, Spain

3. Instituto de Biomedicina de Sevilla (Universidad de Sevilla—CSIC—Junta de Andalucía), 41013 Sevilla, Spain

4. Stroke Unit, Neurology Department, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain

5. Neurovascular Research Laboratory, Instituto de Biomedicina de Sevilla-IBiS, 41013 Seville, Spain

6. Department of Medical Physiology and Biophysics, University of Seville, 41009 Sevilla, Spain

7. Centro Nacional Aceleradores (Universidad de Sevilla—CSIC—Junta de Andalucía), 41092 Sevilla, Spain

Abstract

Intracranial hemorrhage is a serious medical problem that requires rapid and often intensive medical care. Identifying the location and type of any hemorrhage present is a critical step in the treatment of the patient. Detection of, and diagnosis of, a hemorrhage that requires an urgent procedure is a difficult and time-consuming process for human experts. In this paper, we propose methods based on EfficientDet’s deep-learning technology that can be applied to the diagnosis of hemorrhages at a patient level and which could, thus, become a decision-support system. Our proposal is two-fold. On the one hand, the proposed technique classifies slices of computed tomography scans for the presence of hemorrhage or its lack of, and evaluates whether the patient is positive in terms of hemorrhage, and achieving, in this regard, 92.7% accuracy and 0.978 ROC AUC. On the other hand, our methodology provides visual explanations of the chosen classification using the Grad-CAM methodology.

Funder

Ministerio de Ciencia e Innovación of Spain

European Commission

“la Caixa” Foundation

Consejería de Igualdad, Salud y Políticas Sociales de Andalucía, Spain

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3