An Effective Hyperspectral Image Classification Network Based on Multi-Head Self-Attention and Spectral-Coordinate Attention

Author:

Zhang Minghua1,Duan Yuxia1,Song Wei1ORCID,Mei Haibin1,He Qi1

Affiliation:

1. College of Information Technology, Shanghai Ocean University, Shanghai 201306, China

Abstract

In hyperspectral image (HSI) classification, convolutional neural networks (CNNs) have been widely employed and achieved promising performance. However, CNN-based methods face difficulties in achieving both accurate and efficient HSI classification due to their limited receptive fields and deep architectures. To alleviate these limitations, we propose an effective HSI classification network based on multi-head self-attention and spectral-coordinate attention (MSSCA). Specifically, we first reduce the redundant spectral information of HSI by using a point-wise convolution network (PCN) to enhance discriminability and robustness of the network. Then, we capture long-range dependencies among HSI pixels by introducing a modified multi-head self-attention (M-MHSA) model, which applies a down-sampling operation to alleviate the computing burden caused by the dot-product operation of MHSA. Furthermore, to enhance the performance of the proposed method, we introduce a lightweight spectral-coordinate attention fusion module. This module combines spectral attention (SA) and coordinate attention (CA) to enable the network to better weight the importance of useful bands and more accurately localize target objects. Importantly, our method achieves these improvements without increasing the complexity or computational cost of the network. To demonstrate the effectiveness of our proposed method, experiments were conducted on three classic HSI datasets: Indian Pines (IP), Pavia University (PU), and Salinas. The results show that our proposed method is highly competitive in terms of both efficiency and accuracy when compared to existing methods.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Commission part of the local university capacity building projects

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3