GOYA: Leveraging Generative Art for Content-Style Disentanglement

Author:

Wu Yankun1ORCID,Nakashima Yuta1,Garcia Noa1

Affiliation:

1. Intelligence and Sensing Lab, Osaka University, Suita 565-0871, Osaka, Japan

Abstract

The content-style duality is a fundamental element in art. These two dimensions can be easily differentiated by humans: content refers to the objects and concepts in an artwork, and style to the way it looks. Yet, we have not found a way to fully capture this duality with visual representations. While style transfer captures the visual appearance of a single artwork, it fails to generalize to larger sets. Similarly, supervised classification-based methods are impractical since the perception of style lies on a spectrum and not on categorical labels. We thus present GOYA, which captures the artistic knowledge of a cutting-edge generative model for disentangling content and style in art. Experiments show that GOYA explicitly learns to represent the two artistic dimensions (content and style) of the original artistic image, paving the way for leveraging generative models in art analysis.

Funder

JST FOREST Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3