The Effectiveness of Pan-Sharpening Algorithms on Different Land Cover Types in GeoEye-1 Satellite Images

Author:

Alcaras Emanuele1ORCID,Parente Claudio1ORCID

Affiliation:

1. DIST—Department of Science and Technology, Parthenope University of Naples, Centro Direzionale, Isola C4, 80143 Naples, Italy

Abstract

In recent years, the demand for very high geometric resolution satellite images has increased significantly. The pan-sharpening techniques, which are part of the data fusion techniques, enable the increase in the geometric resolution of multispectral images using panchromatic imagery of the same scene. However, it is not trivial to choose a suitable pan-sharpening algorithm: there are several, but none of these is universally recognized as the best for any type of sensor, in addition to the fact that they can provide different results with regard to the investigated scene. This article focuses on the latter aspect: analyzing pan-sharpening algorithms in relation to different land covers. A dataset of GeoEye-1 images is selected from which four study areas (frames) are extracted: one natural, one rural, one urban and one semi-urban. The type of study area is determined considering the quantity of vegetation included in it based on the normalized difference vegetation index (NDVI). Nine pan-sharpening methods are applied to each frame and the resulting pan-sharpened images are compared by means of spectral and spatial quality indicators. Multicriteria analysis permits to define the best performing method related to each specific area as well as the most suitable one, considering the co-presence of different land covers in the analyzed scene. Brovey transformation fast supplies the best results among the methods analyzed in this study.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3