A Methodology for Semantic Enrichment of Cultural Heritage Images Using Artificial Intelligence Technologies

Author:

Abgaz YalemisewORCID,Rocha Souza RenatoORCID,Methuku JapeshORCID,Koch GerdaORCID,Dorn AmelieORCID

Abstract

Cultural heritage images are among the primary media for communicating and preserving the cultural values of a society. The images represent concrete and abstract content and symbolise the social, economic, political, and cultural values of the society. However, an enormous amount of such values embedded in the images is left unexploited partly due to the absence of methodological and technical solutions to capture, represent, and exploit the latent information. With the emergence of new technologies and availability of cultural heritage images in digital formats, the methodology followed to semantically enrich and utilise such resources become a vital factor in supporting users need. This paper presents a methodology proposed to unearth the cultural information communicated via cultural digital images by applying Artificial Intelligence (AI) technologies (such as Computer Vision (CV) and semantic web technologies). To this end, the paper presents a methodology that enables efficient analysis and enrichment of a large collection of cultural images covering all the major phases and tasks. The proposed method is applied and tested using a case study on cultural image collections from the Europeana platform. The paper further presents the analysis of the case study, the challenges, the lessons learned, and promising future research areas on the topic.

Funder

Österreichischen Akademie der Wissenschaften

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3