Abstract
In the current manuscript we assess to what extent X-ray photoelectron spectroscopy (XPS) is a suitable tool for probing the dipoles formed at interfaces between self-assembled monolayers and metal substrates. To that aim, we perform dispersion-corrected, slab-type band-structure calculations on a number of biphenyl-based systems bonded to an Au(111) surface via different docking groups. In addition to changing the docking chemistry (and the associated interface dipoles), the impacts of polar tail group substituents and varying dipole densities are also investigated. We find that for densely packed monolayers the shifts of the peak positions of the simulated XP spectra are a direct measure for the interface dipoles. In the absence of polar tail group substituents they also directly correlate with adsorption-induced work function changes. At reduced dipole densities this correlation deteriorates, as work function measurements probe the difference between the Fermi level of the substrate and the electrostatic energy far above the interface, while core level shifts are determined by the local electrostatic energy in the region of the atom from which the photoelectron is excited.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献