Abstract
Nowadays, mangoes and other fruits are classified according to human perception of low productivity, which is a poor quality of classification. Therefore, in this study, we suggest a novel evaluation of internal quality focused on external features of mango as well as its weight. The results show that evaluation is more effective than using only one of the external features or weight combining an expensive nondestructive (NDT) measurement. Grading of fruits is implemented by four models of machine learning as Random Forest (RF), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN). Models have inputs such as length, width, defect, weight, and outputs being mango classifications such as grade G1, G2, and G3. The unstructured data of 4983 of captured images combining with load-cell signals are transferred to structured data to generate a completed dataset including density. The data normalization and elimination of outliers (DNEO) are used to create a better dataset which prepared for machine learning algorithms. Moreover, an unbiased performance estimate for the training process carried out by the nested cross-validation (NCV) method. In the experiment, the methods of machine learning have high accurate over 87.9%, especially the model of RF gets 98.1% accuracy.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献