Influence of the Ion Mass in the Radial to Orbital Transition in Weakly Collisional Low-Pressure Plasmas Using Cylindrical Langmuir Probes

Author:

Regodón Guillermo FernandoORCID,Díaz-Cabrera Juan ManuelORCID,Fernández Palop José IgnacioORCID,Ballesteros JerónimoORCID

Abstract

This paper presents an experimentally observed transition from the validity of the radial theories to the validity of the orbital theories that model the ion current collected by a cylindrical Langmuir probe immersed in low-pressure, low-temperature helium plasma when it is negatively biased with respect to the plasma potential, as a function of the positive ion-neutral collision mean free path to the Debye length ratio Λ=λ+/λD. The study has been also conducted on argon and neon plasmas, which allows a comparison based on the mass of the ions, although no transition has been observed for these gases. As the radial or orbital behavior of the ions is essential to establish the validity of the different sheath theories, a theoretical analysis of such a transition not only as a function of the parameters Λ and β=T+/Te, T+ and Te being the positive ion and electron temperature, respectively, but also as a function of the ion mass is provided. This study allows us to recognize the importance of the mass of the ion as the parameter that explains the transition in helium plasmas. Motivated by these theoretical arguments, a novel set of measurements has been performed to study the relationship between the Λ and β parameters in the transition that demonstrate that the effect of the ion mean free path cannot be completely ignored and also that its influence on the ion current collected by the probe is less important than the effect of the ion temperature.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3