Study on Damage of 4H-SiC Single Crystal through Indentation and Scratch Testing in Micro–Nano Scales

Author:

Chai Peng,Li Shujuan,Li YanORCID,Yin Xincheng

Abstract

In this paper, a series of indentation tests in which the maximum normal force ranged from 0.4 to 3.3 N were carried out to determine the fracture toughness of 4H-SiC single crystals. The results indicated that an appropriate ratio of the distance from the indentation center to the radial crack tip to the distance from the indentation center to the indentation corner is significant to calculate fracture toughness of 4H-SiC single crystals. The critical condition with no cracks on the edge of the indentation was obtained through a fitting method. The surface morphologies of the groove were analyzed by scanning electron microscopy (SEM). Plastic deformation was observed and characterized by the smooth groove without cracks and ductile chips on the edge of the groove in the initial stages of scratch. With increased normal force, median cracks, radial cracks, and microcracks appeared in turn, followed by the crack system no longer being able to stably extend, causing the brittle fracture to dominate the material removal. The size of the edge damages were measured through SEM and the experimental data highly agreed with the predicted curve. A modified calculation model considering elastic recovery of the sample by the indenter during the scratching process was suggested. These results prove that elastic recovery of 4H-SiC single crystals cannot be ignored during ultra-precision machining.

Funder

Shaanxi Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3