Real-Time and Robust Hydraulic System Fault Detection via Edge Computing

Author:

Fawwaz Dzaky ZakiyalORCID,Chung Sang-Hwa

Abstract

We consider fault detection in a hydraulic system that maintains multivariate time-series sensor data. Such a real-world industrial environment could suffer from noisy data resulting from inaccuracies in hardware sensing or external interference. Thus, we propose a real-time and robust fault detection method for hydraulic systems that leverages cooperation between cloud and edge servers. The cloud server employs a new approach that includes a genetic algorithm (GA)-based feature selection that identifies feature-to-label correlations and feature-to-feature redundancies. A GA can efficiently process large search spaces, such as solving a combinatorial optimization problem to identify the optimal feature subset. By using fewer important features that require transmission and processing, this approach reduces detection time and improves model performance. We propose a long short-term memory autoencoder for a robust fault detection model that leverages temporal information on time-series sensor data and effectively handles noisy data. This detection model is then deployed at edge servers that provide computing resources near the data source to reduce latency. Our experimental results suggest that this method outperforms prior approaches by demonstrating lower detection times, higher accuracy, and increased robustness to noisy data. While we have a 63% reduction of features, our model obtains a high accuracy of approximately 98% and is robust to noisy data with a signal-to-noise ratio near 0 dB. Our method also performs at an average detection time of only 9.42 ms with a reduced average packet size of 179.98 KB from the maximum of 343.78 KB.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on fault detection and diagnosis of industrial robots and multi-axis machines;Results in Engineering;2024-09

2. Edge-cloud collaborative multi-level fault diagnosis based on stacked sparse autoencoder;Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2024);2024-06-05

3. Real-Time Hydraulic Fluid Leak Detection in Heavy Machinery Using Cloud-Integrated Wireless Sensor Networks for Proactive Maintenance;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12

4. Real-Time Fault Diagnosis for Hydraulic System Based on Multi-Sensor Convolutional Neural Network;Sensors;2024-01-07

5. RibesDB: A Time-Series Database at Edge for the Industrial Internet of Things;2023 IEEE 16th Malaysia International Conference on Communication (MICC);2023-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3