Abstract
Electromagnetically induced grating (EIG) is extensively investigated as an artificial periodic structure in recent years owed to its simple reconfiguration and flexible adjustability. We report the experimental observation of EIG in cold rubidium atoms. The coupling and probe lasers are corresponding to the 5S1/2−5P1/2 and 5S1/2−5P3/2 transitions of a V-type electromagnetically induced transparency (EIT) configuration, respectively. A clear spatial intensity distribution of the probe laser with distinguished third-order diffraction pattern is recorded to character the EIG. The influence of the pertinent experimental parameters, such as coupling laser intensity and two-photon detuning on the diffraction pattern is investigated in detail. This is the first observation in visual form of the EIG in cold rubidium atoms. These results may potentially provide a nondestructive method to image cold atoms and pave the way for investigating non-Hermitian physics and the control of light dynamics.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献