Abstract
A regional-scale landslide early warning system was developed in collaboration with a city government. The structure and distinctive features of the system are described in detail. This system employs the principles of the sequential evaluation method that consecutively applies three different evaluation stages: statistical, physically based, and geomorphological evaluations. Based on this method, the system determines five phases of warning levels with improved levels of certainty and credibility. In particular, the warning levels are systematically derived to enable the discrimination of slope failures and debris flows. To provide intuitive and pragmatic information regarding the warning capabilities of the system, a comprehensive performance analysis was conducted. Early warning level maps were generated and a historical landslide database was established for the study period from 2009 to 2016. As a result, 81% of historical slope failures and 86% of historical debris flows were correctly predicted by high-class warning levels. Miscellaneous details associated to the timing efficiency of warnings were also investigated. Most notably, five high-class warning level events and four landslide events were recorded for a study region during the eight-year period. The four landslide events were all successfully captured by four out of the five warning events.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献