Hybrid-Attention Network for RGB-D Salient Object Detection

Author:

Chen Yuzhen,Zhou Wujie

Abstract

Depth information has been widely used to improve RGB-D salient object detection by extracting attention maps to determine the position information of objects in an image. However, non-salient objects may be close to the depth sensor and present high pixel intensities in the depth maps. This situation in depth maps inevitably leads to erroneously emphasize non-salient areas and may have a negative impact on the saliency results. To mitigate this problem, we propose a hybrid attention neural network that fuses middle- and high-level RGB features with depth features to generate a hybrid attention map to remove background information. The proposed network extracts multilevel features from RGB images using the Res2Net architecture and then integrates high-level features from depth maps using the Inception-v4-ResNet2 architecture. The mixed high-level RGB features and depth features generate the hybrid attention map, which is then multiplied to the low-level RGB features. After decoding by several convolutions and upsampling, we obtain the final saliency prediction, achieving state-of-the-art performance on the NJUD and NLPR datasets. Moreover, the proposed network has good generalization ability compared with other methods. An ablation study demonstrates that the proposed network effectively performs saliency prediction even when non-salient objects interfere detection. In fact, after removing the branch with high-level RGB features, the RGB attention map that guides the network for saliency prediction is lost, and all the performance measures decline. The resulting prediction map from the ablation study shows the effect of non-salient objects close to the depth sensor. This effect is not present when using the complete hybrid attention network. Therefore, RGB information can correct and supplement depth information, and the corresponding hybrid attention map is more robust than using a conventional attention map constructed only with depth information.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3