Handwritten Digit Recognition: Hyperparameters-Based Analysis

Author:

Albahli SalehORCID,Alhassan Fatimah,Albattah WaleedORCID,Khan Rehan UllahORCID

Abstract

Neural networks have several useful applications in machine learning. However, benefiting from the neural-network architecture can be tricky in some instances due to the large number of parameters that can influence performance. In general, given a particular dataset, a data scientist cannot do much to improve the efficiency of the model. However, by tuning certain hyperparameters, the model’s accuracy and time of execution can be improved. Hence, it is of utmost importance to select the optimal values of hyperparameters. Choosing the optimal values of hyperparameters requires experience and mastery of the machine learning paradigm. In this paper, neural network-based architectures are tested based on altering the values of hyperparameters for handwritten-based digit recognition. Various neural network-based models are used to analyze different aspects of the same, primarily accuracy based on hyperparameter values. The extensive experimentation setup in this article should, therefore, provide the most accurate and time-efficient solution models. Such an evaluation will help in selecting the optimized values of hyperparameters for similar tasks.

Funder

Qassim University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3