Destruction of Fibroadenomas Using Photothermal Heating of Fe3O4 Nanoparticles: Experiments and Models

Author:

Yeboah Ivan B.,Hatekah Selassie Wonder King,Konku-Asase Yvonne KafuiORCID,Yaya AbuORCID,Kan-Dapaah KwabenaORCID

Abstract

Conventionally, observation (yearly breast imaging) is preferred to therapy to manage small-sized fibroadenomas because they are normally benign tumors. However, recent reports of increased cancer risk coupled with patient anxiety due to fear of malignancy motivate the need for non-aggressive interventions with minimal side-effects to destroy such tumors. Here, we describe an integrated approach composed of experiments and models for photothermal therapy for fibroadenomas destruction. We characterized the optical and structural properties and quantified the heat generation performance of Fe3O4 nanoparticles (NPs) by experiments. On the basis of the optical and structural results, we obtained the optical absorption coefficient of the Fe3O4 NPs via predictions based on the Mie scattering theory and integrated it into a computational model to predict in-vivo thermal damage profiles of NP-embedded fibroadenomas located within a multi-tissue breast model and irradiated with near-infrared 810 nm laser. In a series of temperature-controlled parametric studies, we demonstrate the feasibility of NP-mediated photothermal therapy for the destruction of small fibroadenomas and the influence of tumor size on the selection of parameters such as NP concentration, treatment duration and irradiation protocols (treatment durations and laser power). The implications of the results are then discussed for the development of an integrated strategy for a noninvasive photothermal therapy for fibroadenomas.

Funder

Carnegie Corporation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3