Fatigue Characteristics of Fe-Based Shape-Memory Alloys

Author:

Hong Ki-Nam,Yeon Yeong-MoORCID,Shim Won-Bo,Ji Sang-Won

Abstract

This study reports the details of an experimental study of fatigue behavior of two types of Fe-based shape-memory alloys (Fe–SMAs). The two types of Fe–SMAs developed for this study were used to prepare specimens according to ISO 12106 standards. All fatigue tests were conducted under a constant frequency of five hertz using a universal testing machine with a capacity of 100 kN. The stress ratio applied to the test was zero, and the fatigue tests were conducted until the number of loading cycles exceeded two million, by reducing the stress range from 700 MPa by 100 MPa for each test. At stress range of 700 MPa, the number of loading cycles that has a large ultimate elongation, was greater for the B-type alloy than the A-type alloy. On the other hand, the number of loading cycles at the low stress range below the yield strength was found to be higher in the A-type alloy, which had a higher yield strength than in the B-type alloy. Additionally, by analyzing the S–N relationship and performing a first order regression analysis for the test results, it was confirmed that the fatigue limits of the A-type and B-type alloys are 473 MPa and 330 MPa, respectively.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3