Automatic and Efficient Detection of Loess Landslides Based on Deep Learning

Author:

Ji Qingyun12ORCID,Liang Yuan2ORCID,Xie Fanglin3,Yu Zhengbo12ORCID,Wang Yanli12

Affiliation:

1. College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China

2. Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China

3. College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Frequent landslide disasters on the Loess Plateau in northwestern China have had a serious impact on the lives and production of the people in the region due to the fragile ecological environment and severe soil erosion. The effective monitoring and management of landslide hazards is hindered by the wide range of landslide features and scales in remotely sensed imagery, coupled with the shortage of local information and technology. To address this issue, we constructed a loess landslide dataset of 11,010 images and established a landslide detection network model. Coordinate Attention (CA) is integrated into the backbone with the aid of the YOLO model to capture precise location information and remote spatial interaction data from landslide images. Furthermore, the neck includes the Convolutional Block Attention Module (CBAM), which prompts the model to prioritize focusing on legitimate landslide objectives while also filtering out background noise to extract valid feature information. To efficiently extract classification and location details from landslide images, we introduce the lightweight Decoupled Head. This enhances detection accuracy for landslide objectives without excessively increasing model parameters. Furthermore, the utilization of the SIoU loss function improves angle perception for landslide detection algorithms and reduces the deviation between the predicted box and the ground truth box. The improved model achieves landslide object detection at multiple scales with a mAP of 92.28%, an improvement of 4.01% compared to the unimproved model.

Funder

Remote Sensing Identification and Monitoring Project of Geological Hazards in Sichuan Province

National Geological Disaster Identification Project of Ministry of Natural Resources

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3