Alternatives for the Optimization and Reduction in the Carbon Footprint in Island Electricity Systems (IESs)

Author:

Lozano Medina Juan Carlos1,Perez-Baez Sebastian2,Leon-Zerpa Federico1ORCID,Mendieta-Pino Carlos A.3ORCID

Affiliation:

1. Campus de Tafira, University of Las Palmas de Gran Canaria, 35017 Las Palmas, Spain

2. Department of Process Engineering, University of Las Palmas de Gran Canaria, 35017 Las Palmas, Spain

3. Instituto de Estudios Ambientales y Recursos Naturales (IUNAT), University of Las Palmas de Gran Canaria, 35017 Las Palmas, Spain

Abstract

The penetration of renewable energies in island electricity systems (IESs) poses a series of challenges, which include, among others, grid stability, the response to demand, and the security of the supply. Based on the current characteristics of electricity demand on the islands of the Canary Archipelago (Spain) and their electricity production systems, this study presents a series of alternative scenarios to reduce greenhouse gas (GHG) emissions and increase the penetration of renewable energies. The goal is to optimize combustion-based (nonrenewable) energy production and combine it with renewable-based production that meets the requirements of dynamic response, safety, scaling, and integration with nonrenewable systems in terms of efficiency and power. As verified in the research background, the combination of power producing equipment that is generally employed on the islands is not the best combination to reduce pollution. The aim of this work is to find other possible combinations with better results. A methodology is developed and followed to obtain the lowest GHG production and to determine the measures to be applied based on: (a) changing the fuel type by switching to natural gas in the equipment that allows it; (b) using optimal combinations of the least polluting energy production equipment; (c) integrating, to the extent that it is possible, the Chira-Soria pumped hydroelectric energy storage plant into the Gran Canaria electricity system. A series of alternative scenarios are generated with different operating conditions which show the possibility of increasing the renewable installed capacity in the Canary Islands by up to 36.78% (70% in Gran Canaria), with a 65.13% reduction in GHG emissions and a 71.45% reduction in fuel consumption. The results of this study contribute, through the different measures determined through our research, to the mitigation of GHG emissions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3